Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
NHESS cover
Executive editors: 
 Bruce D. Malamud & Uwe Ulbrich

Natural Hazards and Earth System Sciences (NHESS) is an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences. Embracing a holistic Earth system science approach, NHESS serves a wide and diverse community of research scientists, practitioners, and decision makers concerned with detection of natural hazards, monitoring and modelling, vulnerability and risk assessment, and the design and implementation of mitigation and adaptation strategies, including economical, societal, and educational aspects.


New article processing charges for NHESS

05 Dec 2017

From 1 January 2018 Natural Hazards and Earth System Sciences (NHESS) will slightly increase the article processing charges.

New institutional agreement between the PIK and Copernicus Publications

24 Aug 2017

Authors from the Potsdam Institute for Climate Impact Research (PIK) will profit from a new institutional agreement with Copernicus Publications starting 23 August 2017. The agreement which is valid for the first author enables a direct settlement of article processing charges (APCs) between the PIK and the publisher.

Update of publication policy

04 Jul 2017

The updated publication policy now is extended by the journal's open access statement, its archiving and indexing scheme, and explicit policies on corrections and retractions.

Recent articles

Highlight articles

We developed fragility functions of aquaculture rafts and eelgrass based on damage data and numerical simulation of the 2011 Great East Japan tsunami. These fragility functions explain damage characteristics of both items against tsunami flow velocity. By understanding these characteristics, damage estimation and loss assessment as well as marine/fishery disaster mitigation plan and management in other areas of the world from future tsunamis can be implemented.

Anawat Suppasri, Kentaro Fukui, Kei Yamashita, Natt Leelawat, Hiroyuki Ohira, and Fumihiko Imamura

The vast majority of shallow landslides and debris flows are precipitation initiated and predicted using historical landslides plotted versus observed precipitation information. However, this approach has severe limitations. This is partly due to the fact that it is not precipitation that initiates a landslide or debris flow but rather the hydrological dynamics in the soil and slope. We propose to include hydrological information in the regional hydro-meteorological hazard assessment.

Thom Bogaard and Roberto Greco

This paper provides a full range of possible future sea levels on a regional scale, since it includes extreme, but possible, contributions to sea level change from dynamical mass loss from the Greenland and Antarctica ice sheets. In contrast to the symmetric distribution used in the IPCC report, it is found that an asymmetric distribution toward high sea level change values locally can increase the mean sea level by 1.8 m this century.

Renske C. de Winter, Thomas J. Reerink, Aimée B. A. Slangen, Hylke de Vries, Tamsin Edwards, and Roderik S. W. van de Wal

It is well known that volcanoes and earthquakes are associated, and some active volcanoes cause damaging earthquakes. Nonetheless, volcanoes usually are not pinpointed on a hazard map, as the effects of shallow, volcanic earthquakes can be overshadowed by stronger tectonic earthquakes in the region, particularly when long exposure periods are considered. In this study we faced some challenges with software implementations and original concept scheme for an original PSHA at Mt. Etna, Italy.

Laura Peruzza, Raffaele Azzaro, Robin Gee, Salvatore D'Amico, Horst Langer, Giuseppe Lombardo, Bruno Pace, Marco Pagani, Francesco Panzera, Mario Ordaz, Miguel Leonardo Suarez, and Giuseppina Tusa

Hazard on volcanoes is generally related to eruptions, but Etna represents a perfect lab also for testing new approaches to seismic hazard. Where ancient Greeks and Romans set their towns in striking position, almost half a million people is today exposed to frequent damaging M<5.5 shocks. Taking advantage of a long historical record of earthquakes, a variety of geophysical monitorings and detailed tectonic observations, we defined seismic sources and produced hazard maps to mitigate the risk.

Raffaele Azzaro, Graziella Barberi, Salvatore D'Amico, Bruno Pace, Laura Peruzza, and Tiziana Tuvè

Publications Copernicus